

# MELIS 2019

Lasers in Medicine and Life Sciences Advanced summer school for students of medicine and physics



### IONIZING RADIATION FOR CANCER TREATMENT

### KATALIN HIDEGHÉTY



**INVESTING IN YOUR FUTURE** 



European Union European Social Fund



Hungarian Government Cancer is anarchic, autonom, progressive tissue, built of body identical, but pathologic cells on the basis of genetic error accumulation



### Cancer treatment prior to 1895



Surgery



#### Wilhelm Conrad Röntgen



### Discovery of the ionizing radiation



### COMPLEX TUMOR THERAPY



#### 10 million patients/year receive radiotherapy

### Local therapy modalities

Surgery (minimal invasive/endoscopic)

Radiotherapy

Intraarterial chemotherapy

Electro-chemotherapy





Thermo-ablative methods



Microwave coagulation therapy(MCT)

Radiofrecvention ablation (RFA)

Laser interstitial thermo therapy (LITT)

High Intensity Focused Ultrasound (HIFU)



#### COMPLEX ONCOLOGICAL PATIENT MANAGEMENT



# Ionizing radiation for treatment radiotherapy (RT)



#### Loco-regional treatment method

#### Directed energy deposition in the human body

| Dosis =               | energy |
|-----------------------|--------|
|                       | mass   |
| Unit Gy (Gray): 1Gy=1 | J/kg   |

#### Physical process



Radioactive isotope

Brachytherapy

Teletherapy (percutaneous)



damage to cell membranes

\*Free radicals are highly reactive fragments of molecules having unpaired electrons





#### **Radiation effects**



#### **Radiation effects**



#### CHARACTERISTICS OF RADIATION

- Quality (particle)
- Energy (mean)

photon, electron, proton...

- Intensity
- Dose rate (dose/time)
- linear energy transfer LET (keV/µm)
- relative biological effectivity RBE

#### Linear energy transfer LET

#### (High LET)

Very dense ionisation

#### Low LET

#### Mainly inidrect action <sup>-</sup>OH





#### **Clustered** lesions

High RBE Low OER

| Radiation                           |               | Linear Energy<br>Transfer (keV/µm |
|-------------------------------------|---------------|-----------------------------------|
| Cobalt-60 y-rays                    |               | 0.2                               |
| 250-kV x-rays                       |               | 2.0                               |
| 10-MeV protons                      |               | 4.7                               |
| 150-MeV proton                      |               | 0.5                               |
| 14-MeV neutrons                     | Track Avg. 12 |                                   |
| 2.5-MeV α-particles                 |               | 166                               |
| 2-GeV Fe ions (space<br>radiation ) |               | 1000                              |

#### **Isolated lesions**

### **BIOLOGICAL EFFECTS DEPEND ON**

micr.

- cell cycle
- oxygenisation
- regeneration
- intrinsic radiosensitivity

macr.

•tumour size, -type, -vasc.

•age, nutrition, perf. status

•anaemia, co-morbidity,

medication

#### Radiaton quality, dosis, fractionation, combination

## RT

### AIMS

#### **Tumour elimination**

- Curation
- Organ/function preserv.
- Palliation

### Side effects

- Acute reactions
  - General /Local -Inflammation
- Late sequales (irreversibile)
  - Scar tissue, ulcus, organ function
- (second) tumor induction

#### Therapeutic index

Tumour response

CR, PR, MC, SD, PD LC, TFS, TTP, OS side effects

Toxicity (grade. duration impact on QL)



#### Radiosensitisation



### Concomittant radio-chemotherapy NSCLC



### Concomittant radio-chemotherapy Glioblastoma

# 

#### Irradiation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

### Concomittant anti-EGFr-radiotherapy Head and neck



### **OPTIMISATION IN TIME**

#### Fractionation

- daily dose (conventional, hyperfr., adapted-dinamic, chronobiology guided)
- weekly dose
- Overall treatment time
- Timing in relationship to other treatment modalities in combined scheme (pre-, intra, peri, postoperative, sequential, altered, concomittant)

#### Fractionation schemes

#### DOSE-FRACTIONATION IN RADIOTHERAPY

| TYPE                                     | TIME->            | DOSE | SCHEDULE                         |
|------------------------------------------|-------------------|------|----------------------------------|
| Conventional                             | т                 | D    | 200 cGy/doy                      |
| Hyperfractionation                       | т                 | D+d  | 115 cGy X 2 / doy                |
| Accelerated MDF                          | T/ <del>2</del> 3 | D-d  | 150-200 cGy X 2 /day             |
| Modified<br>Accelerated<br>Fractionation | т                 | D+d  | BOOST                            |
| Split Course                             | T+REST            | D    | REST>           <br>>250 cGy/day |
| Hypofractionation                        | T-t               | D-d  | 500 cGy/day                      |



#### Increased selectivity

**Target volume** Selective homogeneous painted RT (concomittant boost, hypoxic areas)

#### Normal tissues

Decrease of the dose to the normal tissues

TCP † NTCP ↓

#### Increased therapeutic index

### FORMS OF RADIOTHERAPY

- Radioactive isotope
- Brachytherapy
- Teletherapy (percutanious)



### <sup>106</sup>Ru/<sup>106</sup>Rh application









### PROSTATE <sup>125</sup>IODINE SEED

#### Radioactivev izotóp





# Teletherapy

#### After 1895





Abb. 51. Einrichten des Einfallswinkels der Strahlenkegel durch Vergleich aus einem entfernten Standpunkt mit den auf der Visierpappe aufgezeichneten Richtungslinien.


### Linear accelerators

#### **TRUE** Beam



Rapid arc FFF Integrated micromultileaf

kV-CBCT

IMRT/SRS/SABR SIB IGRT/Adaptive RT



#### Photons 3-15 MeV, dose rate: 10 Gy/min

Selectivity, effectivity, accuracy



# Procedures















## Indication of target volume on the basis of PET-CT image fusion









# TREATMENT PLANNING

#### Contouring of target volumes and organs at risk



# **DOSE PRESCRIPTION - PROTOCOLS**

- Target dose, fraction size
- Dose constraints for normal tissues

Aim of the treatment (curative-pall.) Tumour type and characteristics Malignant cell amount (tumour size) Other therapy modalities Tolerance of surrounding normal tissues

#### Standard methods of dose calculation

Pure phenomenological models

Based on a parameterization of the dose distribution using measured data sets, the so called dosimetric base data.

Depth dose curve, doseprofile, collimator-scatter, headscatter for open (square, rectangle shaped) fields

Inhomogeneity correction: A simple way is the scaling of the depth dose curve with the relative electron density of tissue to water.

<u>Convolutional methods</u> (Kernels and pencil beams)

A faster and more elegant method for a more accurate dose calculation of such irregular shaped fields

elementary photon beam  $\rightarrow$  interactions  $\rightarrow$  energy transmission and storing (dose kernel (core))

Sum of elementary beams  $\rightarrow$  Sum of dose kernels

Monte Carlo simulation

## **Plan evaluation**







## Measuring the dose

In order to determine a radiation dose, a variety of physical or chemical radiation effects can be used.

- Radiation effect: Detector of method:
- Ionization in gas

- Ionization in solid
- Luminescence Chemcal effects

Thermal effect

- ionization chamber proportional counter Geiger-Mueller counter
  - state semiconductor crystal conductivity detector
- $\longrightarrow$  TLD
  - photographic film chemical dosimeters, gels
  - $\rightarrow$  calorimeter

## Phantoms

The measurement of water absorbed dose usually is performed within an absorbing medium called a phantom.

Standard phantoms

<u>Water phantom</u>: TBA (Therapy Beam Analyzer) <u>Anatomical phantoms</u>: Alderson-Rando phantom <u>IMRT phantoms</u>





#### Simulation of the fields

Treatment set up – verification (EPID, orthogonal KV, MV images, Cone beam CT, MRI)

Treatment delivery with regular portal imaging and careful patient care

Adaptation to the changes during RT (repeated imaging)

# Adaptive radiation



#### Prior to radiation

After 40 Gy





#### At 50,4 Gy CRT $\rightarrow$ tumor volume decrease **av. 39%**









# QUALITY ASSURANCE

SOPs, defined tasks and responsibilities, regular updating, education, training

Control on medical decisions

Regular control of the machines

Control on procedures, treatment delivery and patient care

Evaluation of the results- transparency

# **Nuclear particles**

attosecon



#### $\alpha$ -particle

<u>heavy ions:</u> Carbon, Oxigen, Neon





# CYCLOTRON

- 1929 Lawrence, inspired by Wideröe and Ising, conceives the cyclotron.
- 1931 Livingston demonstrates the cyclotron by accelerating hydrogen ions to 80 keV.
- 1932 Lawrence's cyclotron produces 1.25 MeV protons and he also splits the atom just a few weeks after Cockcroft and Walton (Lawrence received the Nobel Prize in 1939).





### **History of Proton Beam Therapy**



- 1946 Robert Wilson
- 1948 Tobias, Lawrence (Berkeley)(hypophysectomy)
- 1954-56 Boerje Larsson (Uppsala)
- 1960 Graffman 60 patients.(Stereotactic neurosurgery)
- Early '60 Sweet, Koehler, (Kjellberg, Harvard)- AV. malform.
- 1969 Ganz (retinoblastoma), Constable (eye melanoma)
- 1970 Suit, Goitein (skull base tumors)
- Russia, Japan (Tokio, Chiba)
- 1983 Tsukuba 250 MeV (lung, mediast, GI, Gyn,...)
- 1967 First large-field proton treatments in Sweden
- 1974 Large-field fractionated proton treatments program begins at HCL, Cambridge, MA
- 1990 First hospital-based proton treatment center opens at Loma Linda

### PROTON THERAPY OF UVEAL MELANOMA


















### **Ray-Tracing Dose Algorithm**

- One-dimensional dose calculation
- Water-equivalent depth (WED) along single ray SP
- Look-up table
- Reasonably accurate S for simple heterogeneities
- Simple and fast





### **Pencil Beam Dose Algorithm**

WED

- Cylindrical coordinates
- Measured or calculated pencil kernel
- Water-equivalent depth

**S**.

- Accounts for multiple Coloumb scattering
- more time consuming



### Monte Carlo Dose Algorithm

- Considered as "gold standard"
- Accounts for all relevant physical interactions
- Follows secondary particles
- Requires accurate cross section data bases
- Includes source geometry
- Very time consuming









# E. Gragoudas: Proton Beam Irradiation of Uveal Melanomas: The First 30 Years

### Brachytherapy vs. Hadron therapy

- Local recurrance rate is lower
- Risk of developing cataract is lower
- Enucleation is only rarely necessay

Source 10. Wang et al 2012.



#### **Proton RT**



### Fig. 11. www.nccproton.com



### Meningeoma

- 1/3 of primary CNS tumors
- Initiates fom the meninx
- Slow growing
- Dose on the surrounding healthy tissues (skull base, otic nerve) can be minimized

### Source 12. Combs et al 2010.

#### Proton/ion RT



### Source 12. Combs et al 2010.

### Skull base, proton/ion RT

- Chordoma: 73.5 Gy (RBE)
- Chondrosarcoma: 68.4 Gy (RBE) 1.8–2.0 Gy (RBE)/day
- 5 years local control (LC)
  chordoma 81%
  chordrosarcoma 94%
  - chondrosarcoma 94%
- Toxicity free survival at 5 years: 94%

Source 13. Ares et al 2008.

#### A Comparison of Radiation Treatment Plans for a Base-of-Skull Clival Chordoma



Fig. 14. www.procure.com

### **Childhood malignancies**

Radisensitive embrional tumors, but the surrounding, healthy tissues are radiosensitive, growing tissues

Low dose is important – induction of second malignancy

- Skull base located CNS tumors
- Chordoma, chondrosarcoma
- Ewing and othe sarcomas
- Craniospinalis axis

### Medulloblastoma in adults

- Rare (common at the age of 4-8)
- Initiates from the cerebellum
- Cemotherapeutical options are limited
- High tendency of metastases by the liquor -> irradiation of the cranispinalis axis
- 21 photon vs. 19 proton treated adult patients
- Low rate of acute side effects in the proton group (weight loss, nausea, vomiting, oesophagitis, cell account depletation)
- Low dose on the vertebras



Proton RT

IMRT

Source 15. Brown et al 2013.

#### A Comparison of the Risk of Secondary Malignancies After Treating Medulloblastoma<sup>3</sup>

| Tumor Site                 | IMRT X-Rays | Proton Therapy |  |
|----------------------------|-------------|----------------|--|
| Stomach and esophagus      | 11%         | 0%             |  |
| Colon                      | 7%          | 0%             |  |
| Breast                     | 0%          | 0%             |  |
| Lung                       | 7%          | 1%             |  |
| Thyroid                    | 6%          | 0%             |  |
| Bone and connective tissue | 2%          | 2% 1%          |  |
| Leukemia                   | 5%          | 3%             |  |
|                            |             |                |  |
| All Secondary Cancers      | 43%         | 5%             |  |

### Head and neck tumors

Salivary glands, mouth, pharynx, larynx

- Usually epithelial carcinomas
- Gives fast lymph node metastases because of lymphatic drenage
- Incidence of head and neck tumors increased 6 times since the '50s
- Male:female=5:1
- Pain because of mucositis in the oral cavity leads often to therapeutic failure
- With IMPT the dose on the salivary glands is lower -> side effects are not so sevier



Source 16. Van der Laan et al 2013.

# Tumors of the nasal cavity and sinuses

- Slow growing, locally destructive, in some cases radioresistant tumors, complete surgical removal is not always feasible
- Organs at risk (eye, optic nerve, chiasm)
- 2 years LC: 35%, OS: 47%
- 5 years LC: 17,5%, OS: 15,7%
- Therapy: proton RT ± IMRT
  - IMRT: 30-60 Gy
  - Proton, Carbon ion: 20- 80 GyE

Fukumitsu et al 2012.



- T1 ill. T2 stad., N0, M0 central or periferial
- Hypofractionated proton therapy with 51, 60, 70 Gy
- 4 years OS: 51 Gy 18%

At priferial location 4 years OS: 60%

Source 18. Bush et al 2013.

#### Proton RT





Fig. 20. www.iba-protontherapy.com

#### A Comparison of Radiation Treatment Plans for Esophageal Cancer



Research on the efficacy of proton therapy for esophageal cancer is ongoing, but at present only a few studies have been published. A retrospective study looked at 46 patients treated with proton therapy for locally confined esophageal cancer. The 5-year survival rate for all patient tumor locations was 34%, the 5-year local control rate for T1 patients was 83%, and the 5-year local control rate for T2 to T4 patients was 29%.38 These outcomes are comparable to those seen in patients treated with surgery.38 *Source 21. www.procure.com* 

### **Breast cancer**

### Partial breast irradiation

- In selected patients (Ø lymph node metastasis, local, resection margins are free)
- Phase 2. clinical study (30 patients)
- Accelerated, partial proton RT: dose: 30 GyE, 6 GyE/day, 2 fields
- Mean follow-up 60 months: every patient is disease-free

Chang et al 2013.

### Proton RT



### Source 22. Chang et al 2013.



# Thoracic wall RT after mastectomy

### Proton RT

IMRT

MacDonald et al 2013.

### **Prostate cancer**

#### Proton RT dose distribution

#### IMRT dose distribution



=> low~high risk => 70-72,5 GyE, 2,5 GyE/day~76-82 GyE, 2 GyE/day

2 years after proton RT very low rate of side effects (erectil disfunction, urine or -, feces incontinence, diarrhoea)

www.floridaproton.org

## Proton *versus* photon - radiochemotherapy in the treatment of locally advanced breast cancer

Retrospective analysis : N=1,483 (391 proton/1,092 photon).

Baseline toxicity and performance status were similar (p > 0.05). Proton pat.: significantly older (median 66 vs. 61), had less favorable Charlson-Deyo comorbidity scores (median 3.0 vs. 2.0),

Proton: lower integral radiation dose to tissues outside the target (p < 0.05).

Proton chemo-radiotherapy

- significantly lower relative risk (RR) of 90-day grade ≥3 adverse events 11.5% vs 27.6%
- decline in performance status during treatment (p < 0.01).</li>
  There was no difference in DFS or OS.

**Conclusions:** In adults with locally advanced cancer, proton chemo-radiotherapy was associated with significantly reduced acute adverse events causing unplanned hospitalizations with similar disease-free and overall survival.







Michael Xiang<sup>1,2</sup>, Daniel Chang<sup>1</sup>, and Erqi Pollom<sup>1,2</sup> 1. Stanford Department of Radiation Oncology, 2. Palo Alto Veterans Affairs June 3, 2019

2019 ASCO

PRESENTED AT:

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Michael Xiang, MD, PhD

NATIONAL

DATABASE

### Aim, methodology, and data source

- Aim: Leverage scope of the National Cancer Database (NCDB) to determine second cancer risk associated with 3DCRT, IMRT, and PBRT
- Captures 70% of all cancers in US: enables assessment of a rare event
- Contains RT modality, dose, fractionation
- Other data: chemotherapy, surgery, sociodemographic factors (sex, race, insurance status, income quartile, etc.)

PRESENTED AT: 2019 ASCO

#ASCO19 Slides are the property of the author permission required for reuse.

PRESENTED BY: Michael Xiang, MD, PhD

### Methods: 18 variables used for adjustment

- Patient and sociodemographic: age, sex, race, length of follow-up (measured from RT completion), comorbidity score, geographic region, insurance, income quartile, education quartile, urban/rural residence
- RT: total dose (Gy or GyE), dose per fraction, use of external beam boost
- Tumor: tumor type, stage group, year of diagnosis
- Other treatments: chemotherapy, surgery (including surgery/RT sequence)

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Michael Xiang, MD, PhD

### **Results: Cohort description**

#### • Total 450,373 patients

- 33.5% 3DCRT (151,020), 65.2% IMRT (293,486), 1.3% PBRT (5,867)
- Median follow-up after RT completion
  5.1 years (range: 2-13.8 years)
- Total follow-up period 2.54 million person-years

#### Selected baseline characteristics

|                     | <b>3DCRT</b> | IMRT      | PBRT      |
|---------------------|--------------|-----------|-----------|
| Median<br>age       | 60 years     | 64 years  | 63 years  |
| Median<br>RT dose   | 60 Gy        | 66 Gy     | 79.2 GyE  |
| % chemo-<br>therapy | 48%          | 38%       | 17%       |
| Median<br>follow-up | 5 years      | 5.2 years | 5.2 years |

2019 ASCO ANNUAL MEETING

PRESENTED AT:

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Michael Xiang, MD, PhD

### **Results: Tumor type distribution by RT modality**



#### **Results: Absolute crude incidence of second cancer**

- **3DCRT:** 1.60 per 100 person-years (95% confidence interval [CI] 1.57-1.62)
- IMRT: 1.55 per 100 person-years (95% CI 1.53-1.57)
- **PBRT:** 0.44 per 100 person-years (95% CI 0.37-0.52)



PRESENTED AT: 2019 ASCO ##

#ASCO19 Slides are the property of the author permission required for reuse.

PRESENTED BY: Michael Xiang, MD, PhD

### **Results: IMRT has similar second cancers as 3DCRT**

- Overall adjusted OR 1.00 (95% CI 0.97-1.02), p = 0.75
- Head/neck: adjusted OR 0.85 (95% CI 0.77-0.94), p = 0.001



2019 ASCO ANNUAL MEETING Slides are the prop permission require

PRESENTED AT:

#ASCOT9 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Michael Xiang, MD, PhD
#### **Results: PBRT significantly less second cancer vs IMRT**

- Overall adjusted OR 0.31 (95% CI 0.26-0.36), p < 0.0001</li>
- Head/neck: adjusted OR 0.42 (95% CI 0.22-0.81), p = 0.009
- Prostate: adjusted OR 0.18 (95% CI 0.14-0.24), p < 0.0001</li>
- All <u>except</u> prostate: adjusted OR
  0.51 (95% CI 0.41-0.63), p < 0.0001</li>



PRESENTED AT:

PRESENTED BY: Michael Xiang, MD, PhD

#### **Conclusions and take-away message**

- In this large-scale, national epidemiological study, IMRT and 3DCRT had similar incidence of second cancers, while PBRT had significantly reduced second cancers compared to IMRT by 50-70%
- Strengths: large sample size and follow-up period; adjustment for multiple treatment and sociodemographic factors; inclusion of diverse cancer types
- Limitations: type/location and timing of second cancers not available
- Patients most likely to benefit from PBRT may be pediatric and young adults due to potential for long life expectancy and increased susceptibility to treatment-related malignancies

#ASCO19 Slides are the property of the author permission required for reuse.

PRESENTED BY: Michael Xiang, MD, PhD



# Indications for proton/ion therapy

Locally growing tumor sorrounded by radiosensitive healty tissues:

- Eye tumors (melanoma, retinobl.)
- Skull base tumors (chordoma, chondrosarcoma, meningioma, sinus tu.)
- CNS brain, spinal cord, paraspinal tu., AV malformation
- Childhood malignancies
- Prostate carcinoma
- Lung, breast, sarcomas...

### Proton Therapy Scientific Milestones 60 years





#### Patients Treated with Protons and C-ions Worldwide

Ref.: PTCOG, 2018

## 30 years High-LET Particle Therapy– Milestones





# Hadron centers





<2% of all RT







### 3DCRT IMRT/VMAT SRS/ SABR

# Selectivity, effectivity, accuracy



**e**li





# IGRT

Motion control

Hadron therapy new gen. part. acc



#### PERSONALISED RT BASED ON RADIOMICS/GENOMIC

The implementation of precision medicine, such as genomics, radiomics, and mathematical modelling open the possibility to personalised RT adaptation and treatment. THANK YOU FOR YOUR ATTENTION!





European Union European Social Fund



INVESTING IN YOUR FUTURE

Hungarian Government