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Outline

% Why do we need ultrafast laser spectroscopy?

% What do we need for ultrafast laser spectroscopy?

% Visible transient absorption
% Infrared transient absorption
% Fluorescence lifetime measurement using upconversion

% Fluorescence lifetime measurement using Kerr-gate method



Why do we need ultrafast spectroscopy?

» There are many processes which take place on the femtosecond-picosecond
timescale

» The primary steps of the photocycle in photolyase and cryptochrome family
take place on the fs-ps timescale.

» The primary steps of the photocycle in BLUF domain proteins takes place in

tens of picoseconds



UV induced DNA damage

UV light induce two major lesions in DNA:
cyclobutane pyrimidine dimers (Pyr<>Pyr) and
the pyrimidine-pyrimidone (6-4) photoproduct
(Pyr [6-4] Pyr)



Photorepair in photolyase

UV/blue




Photoactivation in photolyase

Visible




Photoactivation in photolyase

Photoreduction in photolyase (Lukacs et al, JACS , 2008)



Cryptochromes

Sylvia borin

* Photoreception of blue light
 Circadian rythm (insects)

* Sensing the magnetic field



Fluorescence lifetime of FAD and
FMN

heptane at 490nm
Fluorescence decay at 520nm with the excitation at 415nm
FAD
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Flavin adenine dinecleatide
(FAD) : :
Flavin mononucleotide
(FMN)
Riboflavin
Lumiflavin - ;
Lumichrome
Isoallexazine







Flavin photochemistry
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Glucosé Oxidase from A. giner
Mataga et al, 2000

Zhong & Zewail, 2001

® GOXFADH®

® flavodoxin FMNH*®
] 5-CH3FMN *
® flavodoxin oxidized

time (ps)

Lukacs etal., 2012

-FAD* lifetime in solution ~4 ns

In proteins: quenching by ET from
aromatic residues and subsequent
(sub-)picosecond recombination:



Biological Response of the AppA
BLUF Domain

Low Light and Low O9

RNA Polymerase

Photosystem
Biosynthesis

High Light or High O

RNA Polymerase

Photosystem
Biosynthesis

Masuda, S., and Bauer, C. E. Cell, 2002. 110: p. 613-623.



How Does Light Absorption Lead
to the Release of PpsR?

AppA is a Multidomain Complex

»» N-terminal BLUF domain

% C-terminal oxygen sensing domain that binds PpsR

% AppA acts as a dual sensor : two signals give the same response

= How are the signals related?
= How does light absorption by the N-terminal BLUF domain cause a structural
change in the C-terminus, leading to the release of PpsR?



The BLUF Domain of AppA Has Two
States: Dark AppA and Light AppA

AppA

_ ) Formation of the long lived
Singlet excited state

Light state on a picosecond
90 ps Qy = 0.24 timescale
A\ ex = 400 nm 590 ps

Dark AppA : Light AppA

Gauden M, Y.S., et al. Biochemistry,
2005. 44(10): p. 3653-62.

After excitation with 400 nm light
10 nm red-shifted
electronic spectrum

Nanometers



What do we need for ultrafast
spectroscopy?

» Ultrafast lasers (oscillator or amplifier)

» Ti:Sa oscillator high repetition rate (100 MHz) and lower energy (1nJ)
» Regenerative amplifier (2-10 kHz) but high (12-5 mJ) energy

» The resolution of the system is limited by the pulse with of the laser
» Typical resolution is between 100-200 fs. There are system (UEA,

RIKEN) less than 5o fs



Mode-locking

* Locking the phases of the laser modes yields an ultrashort pulse.

phase phase phase

Random
phases

Time =—b

out of in out of
phase phase! phase

Ultrashort
pulse!!




Ti:sapphire laser

It can be
pumped with a
(continuous)
Argon laser
(~450-515 nm)
or a
doubled-Nd
laser (~532
nm).

Upper level
lifetime:
3.2 usec

Absarption Fluorescence

A0 o Ton S00 =00 0

wavelength [l

Ti.Sapphire lases from
~700 nm to ~1000 nm.



Ti:sapphire laser

Adding two prisms compensates for dispersion in the Ti:Sapphire
crystal and mirrors.

Ti:Sapphire Slit for
m gain medium Cw pump beam tuning

| |
”c& R Taalih

compensator

This is currently the workhorse laser of the ultrafast optics community.



sapphire laser




Chirped-Pulse Amplification |

h i '
FSDUE: CPA is THE big development.

oscillator
\ G. Mourou and
. coworkers 1983

Dispersive delay line

=—

»

Solid state amplifier(s)

Chirped-pulse

amplification in-

volves stretching the

pulse before amplifying it,
and then compressing it later.

Pulse compressor

We can stretch the pulse by a factor of 10,000, amplify it,
and then recompress it!




What do we need for ultrafast
spectroscopy?
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Ultrafast laser spectroscopy

|. Transient absorption spectroscopy



Transient absorption spectroscopy

. Delay stage .

Monochromator

Reference beam
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Transient absorption spectroscopy

26



Transient absorption spectroscopy
White light continuum

Autoscale: Min. Max (3. 3}>(510, 510) Single Scan




Transient absorption spectroscopy
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Transient absorption spectroscopy
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Transient absorption spectroscopy

Oxidized FAD

Model ExpDec1

. y = Al*exp(-x/t1
Equation ) +y0

Reduced 11.45867
Chi-Sqr
Adj. R-Square 0.9368
Value Standard Error
35.92169 0.28392
98.31603 4.15105
10.02135 0.41031




Transient absorption spectroscopy

e dAppA 12 ps, 449 ps
e Q63E 25ps, 187 ps
e |AppA 7 ps, 67ps

500 520 540
wavelength (nm) time (ps)




Data analysis

Glotaran

a graphical user interface for the R-package TIMP

vrije Universiteit amsterdam !ﬁb

You are here: » Home - Documentation |Searc

Main Documentation Demonstration Screenshots Downloads TIMP Related links

Login

Glotaran Wiki

Manager
Trace: - start

Table of Contents

Glotaran Glotaran

Index
Glotaran is a tool for interactive global and target analysis of time-resolved spectroscopy and
microscopy data. It is an open source software application on which the development was
started at the Biophysics department of the VU University Amsterdam, as part of a NWO
funded research project, by %/ Joris lenburg and & y Laptenok under supervision of &/ Ivo va

Index

Installation. Up to date installation instructions and changelog
Manual. Glotaran manual page
FAQ. Frequently asked questions on Glotaran
File formats. File formats that can be read by Glotaran
Color and line convention. Line colors and line styles used in the Glotaran
lender. Releases Roadmap. Upcoming events (demonstrations / lectures)
Acknowledgments. Glotaran would not have been possible without the hard work of many
people




Ultrafast laser spectroscopy

Il. Transient infrared absorption spectroscopy
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» Ultra-high intensity 2.6 kJ in sub-picosecond * Smaller scale lasers

pulses, 100 TW —- PW e Vibrational
e Fusion and Plasma Research spectroscopy
« Extreme UV generation * Imaging; laser tweezers

and microscopy

« Attosecond pulse generation research



LSF User community




* RCUK Building
* Activity Across “Life and Physical
Sciences Interface”

* Short and Long term Research Visitors using
facilities across RAL site (Diamond, ISIS CLF)
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http://www.rc-harwell.ac.uk/home.html

* Pump - probe scheme with variable time delays

* Pump pulse drives a chemical reaction or energy transfer

* Probe pulse may observe UV — IR absorption spectrum or Raman
spectrum



Touaryx

Touaryx > 65 W
A > 75 W

Touaryx > 75 W




Tunability: 200 — 20000 nm
Pulse durations: 40 fs—1nm
Bandwidth: 5 — 600 cm™

(EAE. § CIC




t LA

UV - IR PUMP

nm

IR - UV PROBE
<100 fs, 1 mJ s Y H N
/ AN N

e Single shot spectrum measurements Reference
using sensitive array detectors. beam I

e Absorption changes measured by 5
kHz chopping of pump beam. A

Array
e Probe beam referenced to remove detectors

laser shot noise. A
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Excite ground state
with 400 nm light

Relaxation to
ground state

' 'AGround State
Vibrational Levels

Wavenumber

Ground State
IR Spectrum

Excited State
IR Spectrum

Difference
Spectrum
Tn N TO



AmQOD

0,00015

-0,00015

-0,00025

-0,00035

Transient infrared spectra

Wavenumber (cm-1)



Transient infrared spectra

}WHJ

Decay at 1550cm”

1400 1450 1500 1550 1600 1650 1700 1750 1800 - 100

Wavenumber (cm™) Time(ps)

a) TRIR spectra of FAD at various time delays b) Decay curve at 1550 cm*band



TRIR measurements on AppA

Flavin chromophore

1500 1550 1600 1650 1700
Wavenumber (cm'1)




Time Resolved Multiple
Probe Spectroscopy

Macromolecular

Reaction Pathway

Dynamics & Change



68 MHz Clock

AL

Divide Down

Optical delay

68MHz Clock
Rephased to seed
1kHz Amplifier

T

TRMPS concept

10 kHz Laser
Trigger

Divide Down
and Delay up
t0 100 ps

1 kHz Laser
Trigger

1

10 kHz Probe

<1 kHz Pump




TRMPS on WT AppA

1400 1500 1600 1700 1400 1500 1600 1700
Wavenumber (cm™) Wavenumber (cm™)

—— unlabeled 10 ns
—— unlabeled 20 us

—C10ns —— 20 us TRMPS
— "C20 us FTIR

1550 1600 1650 1700 1750 08550 1600 1650 1700 1750
Wavenumber (cm™) Wavenumber (cm™)

R. Brust , A. Lukacs,et al., 2013, JACS



TRMPS on WT AppA
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R. Brust , A. Lukacs,et al., 2013, JACS



TRMPS on FMN

1400 1500 1600 1700 1,400 1,500 1,600 1,700
Wavenumber (cm’ Wavenumber (cm’)

R. Brust , A. Lukacs,et al., 2013, JACS
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Ultrafast laser spectroscopy

l1l. Fluorescence upconversion



Frequency mixing

(b)

mf:m1+ab

Minak

W3 = W1+ w2

K, =k, +k,

conservation of energy
Conservation of momentum

Phase mismatch




Frequency mixing

Phase matching in a birefringent crystal (BBO)

z(optic) axis
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Frequency mixing
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Prism and
collimating lenses

Photographic

- Figure 12.1. Arrangement used in the first experimental demonstration of second-harmonic
generation [1]. A ruby-laser beam at A = 0.694 pm is focused on a quartz crystal, causing the
generation of a (weak) beam at ;A = 0.347 pm. The two beams are then separated by a prism

and detected on a photographic plate.
The second-harmonic beam was very weak because the process

was not phase-matched.




Difference-Frequency Generation: Optical Parametric
Generation, Amplification, Oscillation

Difference-frequency generation takes many useful forms.

Wy = 03 — 0
—

Parametric Down-Conversion
(Difference-frequency generation)

™,
ﬁ

Optical Parametric
Amplification (OPA)

o, _
ﬁ Hldler"

Optical Parametric  BY convention:
Generation (OPG) ~ “sianal = Pidter

(=)

mirror mirror

Optical Parametric
Oscillation (OPO)



Frequency mixing

Noncollinear optical amplification




Frequency mixing (OPOs)

Optical
parametric
oscillators  are
tunable
femtosecond
light sources.
They are
working at the
same repetition
rate as the
oscillator



Fluorescence upconversion

. . Delay Stage
Ti:Sapphire M
Chirped Mirror

Prism Type |. phase matching:

Compressor

800.0(0)+ 520.0(0)= 315.2 (e)
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Fluorescence upconversion
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Upconversion fluorescence setup, UEA, 2012



Fluorescence lifetime of WT AppA
and Y56F, Q63E mutants

—— Y56F FAD
——— QN 6mutation FAD
—— QB63E FAD
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Fluorescence lifetime of WT AppA

and Y56F, Q63E mutants

Y56F FAD
0.39
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11.26
0.65

156.56
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0.26
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Az 0.11
<t> /Ips

24.73

Q63E Rf
1.44
0.11
26.62
0.39
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0.40

0.13
0.43

Ag 0.45
<> /ps 80.05

QN 6mutation FAD

Q63E FAD
5.53
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35.52
0.32
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0.44

191
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0.15
0.36

0.49
92.12
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Ultrafast laser spectroscopy

IV. Kerr-gated fluorescence spectroscopy



Kerr-gate fluorescence
spectroscopy

Yves Engelborghs
Antonie J.W.G. Visser Editors

Laptenok SP, Nuernberger P, Lukacs A,
Vos MH:

Subpicosecond Kerr-Gate
Spectrofluorometry.

in Fluorescence Spectroscopy and
Microscopy Methods in Molecular
Biology Volume 1076, 2014, pp 321-336
(Springer Protocols)



» Optical Kerr-effect: high laser intensity will change the refractive index of
the optical material

» n=n_+n,l if the intensity (I) of the laser pulse is high

» Theincident laser pulse will induce a change in polarisation



Kerr-gate setup

12 plate

I— moving stage
800nm




Kerr-gate setup

~ . - —— Suprasil
; e —— Benzene
’ 01z — CS2

370 380 390 400 410 420 - - -
L —a wavelengths, nm time (ps)

Pick-up mirror on the Comparison of Kerr-materials

Cassegrain objective



Fluorescence lifetime of MTHF in
N378D photolyase
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Fluorescence lifetime of MTHF in
N378D photolyase

Dispersion parameters

V| sh ated dispersion curve

Central paint for disp

Estimated parameters:




Fluorescence lifetime of MTHF in
N378D photolyase
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Fluorescence lifetime of FAD in
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Transient fluorescence of Pl mutants

Photolyase timetraces

wtPL
— E109A
— N378D
— N378D illuminated
—— N378C E109A
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Flavoproteins

*More than 150 enzymes use flavin (FAD or
FMN) as a cofactor

*Essential for many biochemical processes
*Rich redox and proton chemistry

*Most encountered as (light-independent)
redox intermediate

*Absorb UV and blue light

*Some flavoproteins are photoactive




Flavin photochemistry

Flavodoxin from D.vulgaris -FAD* lifetime in solution ~4 ns

| -In proteins: quenching by ET from
aromatic residues and subsequent
(sub-)picosecond recombination:

= VINE: FMN-*- -
~ Trp**/Tyre*

~

Y 4

FAD*, 5 . FAD" -
~ __ Trp~/Tyr*t

"W kap,/”

Mataga et al, 2000
Zhong & Zewail, 2001

Glucosg Oxiqase frorn A. _gin_e‘r



Chemistry Prizes ~

¥ About the Nobel Prize in
Chemistry 2015
Summary
Prize Announcement
Press Release
Advanced Information
Popular Information
Greetings
Award Ceremony Video
Award Ceremony Speech
» Tomas Lindahl
» Paul Modrich

» Aziz Sancar

All Nobel Prizes in Chemistry
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Share this: QBB E 2«

The Nobel Prize in
Chemistry 2015

Photo: A, Mahmoud Photo: A

Tomas Lindahl Paul Modrich Aziz Sancar

Mahmoud Photo: A. Mahmoud

Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

The Nobel Prize in Chemistry 2015 was awarded jointly to Tomas
Lindahl, Paul Modrich and Aziz Sancar "for mechanistic studies of
DNA repair".




Photoinduced DNA damage

UV light induce two major lesions in DNA:
cyclobutane pyrimidine dimers (Pyr<>Pyr) and
the pyrimidine-pyrimidone (6-4) photoproduct
(Pyr [6-4] Pyr)



UV/blue




Photoactivation

Visible




Photoactivation in E coli PL

POLYTECHNIQUE

Visible
W359

\W382 %
Q

@

@’ Step

*Excited state of FADH  extracts an electron from W382 in ~ 30 ps
*The cation radical W382° *is reduced by W359 @
*W359° *is subsequently reduced by the solvent exposed W306 in < 10 ns

*W306° * releases a proton into the aqueous phase in ~300 ns




Cryptochromes

Sylvia borin

* Photoreception of blue light
 Circadian rythm (insects)

* Sensing the magnetic field



Cryptochrome vs photolyase

What makes photolyase
different from cryptochromes?




Absorption spectra of WT and N378D mutant

400 500
wavelength (nm)
— WT
—— E109A/N378D

wavelength (nm)




Transient absorption spectroscopy

. Delay stage .

Monochromator

Reference beam
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Transient absorption spectroscopy




Kerr-gate fluorescence
spectroscopy
| SwingerrooiOR
_aptenok SP,

| Ao W Visr o Nuernberger P,
F _ukacs A, Vos
MH:
Subpicosecond
Kerr-Gate

Spectrofluorom
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Kerr-gate setup

12 plate

I— moving stage
800nm




Redox state of FAD in Cry-s

* In plant cryptochromes (Arabidopsis Thaliana) FAD is oxidized after
purification. After ligth absorption gets reduced to neutral
semiquinone state (FAHD®°)

* In insects (Drosophila, Monarch butterfly, etc.) FAD is oxidized after
purification but can be reduced easily (by light) to the anionic
radical state (FAD?)

* In plants there is an aspartic acid facing the N5 of the isoalloxazine
ring, in insects this is rather a cysteine residue



Redox states of flavin




What drives the function ?

* Sancar: photoinduced ET is not needed for the function. Same time

if W382 was mutated it abolished the function

* Vaidya et al.: change in the redox state of flavin will alter the

conformational change of CTT (this happen also in At Cry)

* The difference in the redox state after light absorption is related to

the amino acid facing N5 (Asp, Cys)



dCRY as purified

What drives the function ?

w420
w415

| —— |7 | [ ——— (FAD)*™
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N U ’ N )4 dCRY signaling state?
/ : AICRY signaling state?
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H. e~
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R H
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. _NH g I A A NH light

N - r e Y PL reactive state
H | green o red |

H ‘
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AICRY signaling state? PL ground state
aCRY ground state AICRY non-signaling state
aCRY signaling state




Strategy

* Check photcycle of At Cry in the case of the short and full length
protein

* Test whether mutation of the aspartic acid (D396) will abolish the
conformational change in the full length At Cry

* Miscellaneous experiments (Cryptochrome like photolyase

mutants)

* Express dCry and check the redox change by ultrafast spectroscopy



Miscellaneous

* Amino acid opposite to N5 of FAD is asparagine in photolyase,
aspartic acid or cystein in the cases of cryptochromes

* Two mutants (N378D, N378C) were made to mimic the
cryptochromes

A. thaliona CRY1

/ Y402
V363




N378D mutant

—— FAD? (insect CRY)
—— FADH® (EcPL)

— FAD" (N378D EcPL)

wavelength (nm)
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